5a) CD27+ B cells from CVID MB0 patients were less sensitive to

5a). CD27+ B cells from CVID MB0 patients were less sensitive to apoptosis rescue when stimulated with anti-CD40 and IL-21 or CpG-ODN and IL-21 than control subjects (17·6 versus 42·8%, P < 0·001; and 21·9 versus 44·4%, P < 0·05, respectively) and CVID MB1 patients (17·6 versus 35·8%, P < 0·01; and 21·9 versus 62·5%, P < 0·01, respectively). CD27– and CD27+ B cells from CVID MB1 (Fig. 5b) patients were rescued from apoptosis similarly to controls. IL-21 not only abrogated the protective effect induced by anti-IgM, but increased the percentage of apoptotic

B cells both in controls and CVID patients irrespective of their group (Fig. 5a,b). When we evaluated the proliferation Sorafenib clinical trial index, we did not find differences between CVID patients and controls (Fig. 5c,d). Thus, again, differences BAY 80-6946 cell line of apoptosis rescue

between CD27+ B cells from CVID MB0 patients and controls cannot be attributed to differences on B cell proliferation (Fig. 5). Higher expression of TRAIL has been related to apoptosis and loss of peripheral memory B cells (identified as CD27+) in successfully treated aviraemic HIV patients. We evaluated if differences in TRAIL expression on CD27+ B cells from CVID MB0 patients could explain the observed resistance to apoptosis rescue. CD27– B cells from CVID MB0 and MB1 patients showed similar TRAIL expression than controls (Fig. 6). However, CD27+ B cells from CVID MB0 patients showed higher TRAIL expression than controls (2·8 versus 1·6 MFI; P < 0·001) or MB1 patients (2·8 versus 1·7 MFI, P < 0·001). We did not find differences in CD27+ B cells from CVID MB1 when compared to controls (Fig. 6). The B cell fate is determined by the nature of the antigen encountered and a combination of signals provided through membrane co-receptors or by secreted interleukins encountered in the lymphoid compartment. Unsuccessfully stimulated B cells die from apoptosis.

Survival, growth and differentiation signals are required to maintain B cell homeostasis and to induce their differentiation into effector subsets. In this study, we show that CD27+ Edoxaban B cells are less sensitive to rescue from apoptosis than CD27– B cells, irrespective of the stimulus used. Although IL-21 rescues unstimulated CD27– B cells from spontaneous apoptosis and increases the protective effect of anti-CD40 in CD27+ B cells, it reduces the protective effect of most stimuli used in both CD27– and CD27+ B cells. When we evaluate CVID patients, we observe that CD27+ B cells from MB0 patients are less sensitive to rescue from apoptosis than B cells from MB1 patients and normal controls after anti-CD40 or CpG-ODN stimulation. These differences are not restored by the addition of IL-21. This is in agreement with the higher TRAIL expression observed in CVID MB0 patients.

Comments are closed.