faecalis

and E faecium SNP profiles in the Coomera River

faecalis

and E. faecium SNP profiles in the Coomera River It is more important to focus on E. faecalis and E. faecium rather than the total enterococcal count as they pose a definite human health risk and are the predominant enterococcal species in human faeces and sewage. In total, 55 E. faecalis and 47 E. faecium strains were isolated from six different sampling sites along the Coomera A-1210477 datasheet River. In this study, we applied a recently developed SNP genotyping method to the Coomera River to determine the diversity of E. faecalis and Trichostatin A E. faecium genotypes. This method represents an efficient means of classifying E. faecalis and E. faecium into groups that are concordant with their population structure [29]. For the purpose of clarity, we define the SNP profiles into two main groups. The first group is the human-specific SNP profile group; these profiles are associated with enterococcal strains that originate from human samples only,

as Alvocidib manufacturer defined by the MLST database, as well as our previous study [27]. The second group is the human-related SNP profile group; these profiles are associated with enterococcal strains that originate from mixed sources (human and animal)

according to the MLST database, but we MG 132 found these profiles for enterococcal isolates from human specimens as well [27]. The SNP profiles of the Coomera enterococcal strains were compared to known human-related and human-specific SNP profiles described previously [29]. SNP profiles were validated by gene sequencing using MLST primers for E. faecalis and E. faecium. Enterococcal strains with new SNP profiles (3 and 10 profiles for E. faecalis and E. faecium respectively) were also sequenced, and added to the MLST database (Tables 4 and 5). The Coomera isolates were grouped into 29 and 23 SNP profiles for E. faecalis and E. faecium respectively (Tables 4 and 5). These results confirm that the enterococcal population in the Coomera River is diverse. Figures 2 and 3 illustrate the distribution of these SNP profiles at all sampling points over the two year study period. In addition, we found that both E. faecalis and E. faecium populations were more diverse during rainfall periods (August 2008 and March 2009). Table 4 SNP and antibiotic resistance gene profiles of E.

Comments are closed.