meningitidis serogroups C and Y “
“Liver cancer (LC) is gene

meningitidis serogroups C and Y.”
“Liver cancer (LC) is generally characterized by malignant cell proliferation

and growth; it normally develops in stages that progress from non-specific injury of the liver to liver fibrosis, liver cirrhosis, dysplasia nodules, and liver carcinoma. We used a rat model of selleck products diethylnitrosamine (DENA)-induced LC; a Rat Genome 230 2.0 Array was used to detect gene expression profile of liver tissues from male rats 5, 8, 12, 16, and 18 weeks following the beginning of DENA-induced LC. We found 909 known genes, including 637 up-regulated, 270 down-regulated, and two up/down-regulated genes, that were significantly changed in expression. Among them, 108 genes were expressed at the 5th, 213 at the 8th, 516 at the 12th, 698 at the 16th, and 506 at the 18th week of DENA-induced LC. Methods in bioinformatics and systems biology were applied to explore the correlation between the gene expression profile of rat liver tissue and liver cancer occurrence at the transcriptional level; 23 physiological activities were found

to be associated with CH5424802 LC. Among these, eight physiological activities, including stimulus response, inflammation and immune response, oxidative reduction, cell proliferation, differentiation, migration, adhesion, and angiogenesis were increased, implying that they could play important roles in the occurrence and development of LC. In addition, carbohydrate, lipid, and organic acid metabolism were decreased, suggesting that liver injury induced by a carcinogenic agent has a negative effect on the metabolism of fundamental substances.”
“We study the effect of electron beam irradiation

on the bending modulus of multiwall carbon nanotubes grown by chemical vapor deposition. Atomic force microscopy observations of the nanotube deflection in the suspended-beam geometry suggest an internal, reversible stick-slip motion prior to irradiation, indicating presence of extended defects. Upon electron beam irradiation, nanotubes with an initial bending modulus exceeding 10 GPa initially get stiffer, before softening at high doses. Highly defective nanotubes with smaller initial bending moduli do not exhibit the initial reinforcement. These data are explained by ab initio molecular dynamics calculations suggesting BIX 01294 price a spontaneous cross-linking of neighboring nanotube walls at extended vacancy defects created by the electron beam, in agreement with electron microscopy observations. At low defect concentration, depending on the edge morphology, the covalent bonds between neighboring nanotube walls cause reinforcement by resisting relative motion of neighboring walls. At high concentration of defects that are present initially or induced by high electron beam dose, the structural integrity of the entire system suffers from increasing electron beam damage. (C) 2010 American Institute of Physics. [doi:10.1063/1.

Comments are closed.