This could be carried out

This could be carried out JSH-23 mw in our future study. The mechanism of NQO1-mediated chemosensitization was further explored. Previous reports suggested that NQO1 modulates p53 expression by interfering with 20S proteasome-mediated

degradation of p53 [24]. Inhibition of NQO1 by dicoumarol suppressed p53 protein levels and induced cell death [24]. In contrast, dicoumarol at non-cytotoxic concentrations, but sufficient to inhibit NQO1 enzyme activity, enhanced p53 protein levels [22]. Present results show that the suppression of NQO1 increased p53 expression. Tumor protein p53 and Bcl family proteins regulate mitochondrial outer membrane permeabilization (MOMP) [26]. Our results showed that the increase of p53 was associated with increased p21 and Bax levels. Both p21 and Bax are p53-dependent downstream gene products. The p21 is a potent cyclin-dependent kinase inhibitor and its expression is associated with the strong antiproliferative effect as was seen in the present study. Bax is a multidomain proapoptotic Bcl2 family. It translocates into the mitochondrial outer membrane and forms Bax pores leading to the release of proapoptotic proteins and ensuing cell death [27]. p53 is a tumor suppressor gene that responded to DNA damage or oxidative

stress by inducing Selleckchem NCT-501 growth arrest or apoptotic cell death [28, 29]. Our results showed that knockdown of p53 inhibited the chemosensitizing

effect, which was induced by knockdown of NQO1 in KKU-100 cells. This indicates that the sensitizing effect of NQO1 knockdown is mediated via p53 pathway. It is also noted that KKU-100 cells expressed both the wild type full length p53 as well as the splicing variant of truncated p53 protein [30]. Interestingly, our next results showed that the potentiation effect of NQO1 gene silencing on the cytotoxicity of chemotherapeutic agents can occur even in cancer cells with high expression ratio of mutant p53/wild type p53. It is yet to determine the chemosensitizing effect of NQO1 suppression on cells expressing the other mutated p53. As some CCA patients express high NQO1 [20], targeting the NQO1 by suppressing the activity or expression could be a strategy to overcome drug resistance of cancer and enhancing the efficacy of chemotherapeutic agents. Conclusions In summary, NQO1 plays an important role in cytoprotection of cancer cells and modulates the sensitivity of chemotherapeutic agents, particularly in the high NQO1 expressing CCA cells. NQO1 is a CB-839 potential molecular target for enhancing the antitumor activity of chemotherapeutic agents.

Comments are closed.