Pairs of V4 and FEF sites with overlapping RFs showed gamma-band coherence that was enhanced when attention was inside the joint RF (Gregoriou et al., 2009). Long-range gamma-band coherence has also been studied with noninvasive recordings in human subjects (Schoffelen et al., 2005, 2011; Siegel et al., 2008; Hipp et al., 2011). For example, Schoffelen et al. showed that corticospinal gamma-band coherence indexes a subject’s dynamic movement preparation (Schoffelen et al., 2005) selectively among those corticospinal neurons involved in the upcoming movement (Schoffelen et al., 2011). To study interareal coherence
between monkey areas V1 and V4, we have relied on electrocorticographic LFP recordings that measure the electrical activity under the electrode. Neither the volume of tissue nor the way in see more which it affects the recording are fully understood. Yet, a few statements about ECoG recordings can be made. (1) ECoG signals do not provide a direct measure of spiking activity, and, therefore, our results do not directly test predictions that might be derived from the CTC hypothesis about spike synchronization. (2) ECoG recordings from V1 reflect both V1 neurons with connections to V4 and other V1 neurons. Similarly,
ECoG recordings from V4 reflect V4 neurons with direct input from V1 and other V4 neurons. Therefore, our results do not directly DAPT quantify the coherence between V1 output neurons and their postsynaptic target neurons in V4. Such an analysis would have required the simultaneous recording of interareal pairs of isolated single units, identified to be monosynaptically coupled to each other. While this would have been technically extremely challenging, it would at the same time have rendered the analysis of interareal coherence extremely insensitive. Isolated 4-Aminobutyrate aminotransferase single neurons reflect with their sparse spiking only poorly the phase of the underlying rhythm. For two isolated single neurons in V1 and V4, coherence analysis would have been exceedingly insensitive (Zeitler et al., 2006). (3) ECoG recordings combine spatial resolution in the range of few millimeters
(Figure 1C) with excellent sensitivity for the rhythms in the respective local neuronal population (Figure 1B). The core prediction of the CTC hypothesis with regard to selective attention relates to this mesoscopic level: the V4 rhythm is selectively coherent with the V1 rhythm that is driven by the behaviorally relevant stimulus. To test this prediction, simultaneous multiarea ECoG recordings are ideal. Spike recordings in V4 would have allowed testing whether postsynaptic neurons responded primarily to the attended stimulus. However, this core result from the attention field (Moran and Desimone, 1985; Reynolds et al., 1999) has been replicated several times and presumably holds also in our experiment. Thereby, our present results actually also support the “Binding by Synchronization” (BBS) hypothesis.