It is not clear if the model described by Ma et al (2013) overes

It is not clear if the model described by Ma et al. (2013) overestimates wave height or Fluidity underestimates. It should be noted that previous comparisons of Fluidity to both numerical models and observational data, Haugen et al. (2005) and Oishi et al. (2013), show excellent

agreement to both amplitude and phase of wave patterns resulting from both slides and earthquakes in two- and three-dimensions at ocean scales. Having benchmarked the implementation of the prescribed slide boundary conditions against independent models, we now show how Fluidity is capable of simulating real-world scale slide-generated tsunamis with high resolution in areas of interest by recreating the Storegga slide. The same domain is used

for all simulations described here. The domain stretches from 43° west to 24° east and 47° north to selleck chemical 80° north. GSHHS data (Wessel and Smith, 1996) was used to generate coastlines for all modern simulations, which has resolutions of 200 m (full) to 25 km (coarse). For the simulation involving palaeobathymetry the coastline was derived from the 0 m contour. Bathymetric data was derived from GEBCO (IOC, 2008) which has resolution of 1 arcminute (approximately 2 km in this region). For each domain QGIS (QGIS Development Team, 2009) was used with bespoke software to generate coastline input for GMSH (Geuzaine and Remacle, 2009) which created the horizontal computational mesh. The mesh is on a Cartesian sphere of radius 6371.01 km. Coastlines were constructed using a B-spline

curve through the points given by the GSHHS data. Bathymetry is incorporated by extruding the generated surface mesh radially downward to the depth given by the bathymetric data, which is carried out at run-time. Each simulation uses a one-element deep solution, Resminostat effectively a depth-averaged velocity as used in (Mitchell et al., 2010 and Wells et al., 2010). A consequence of this approximation is that a minimum water depth has to be specified for the mesh as inundation (wetting and drying) was not utilised in this study. Here, a minimum depth of 10 m was used. We generate the slide using the single rigid block slide, described in Eqs. (4), (5), (6), (7), (8), (9), (10) and (11), following the work in Harbitz (1992), using the parameters in Table 2. Note that we do not include the effects of retrogressive slide evolution. This style of multi-block slide motion was investigated in Løvholt et al. (2005) and Bondevik et al. (2005), who concluded that the time interval between block initiation would need to be very small in order to produce large wave heights consistent with observation and such scenarios are qualitatively similar to the motion of a single continuous body. For initial runs, to explore the sensitivity of model results to spatial resolution, the simulation was run for five hours model time, which was sufficient to allow comparison with previous studies.

Comments are closed.